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Ensemble and Trajectory Statistics in a 
Nonlinear Partial Differential Equation 

Michael C. Mackey, 1 and Helmut Schwegler 2 

We have examined the influence of parametric noise on the solution behavior 
u(t, x) of a nonlinear initial value (~0) problem arising in cell kinetics. In terms 
of ensemble statistics, the eventual limiting solution mean (u and variance #~ are 
well-characterized functions of the noise statistics, and ( .  and 62~ �9 depend on ~o. 
When noise is continuously present along the trajectory, ~. and c72 are 
independent of the noise statistics and q~. However, in their evolution toward (,, 
and 62., both ~.(t, x) and az(t, x) depend on the noise and ~o. 

KEY WORDS:  Parametric noise; nonlinear partial differential equations; 
ensemble statistics; trajectory statistics. 

1. I N T R O D U C T I O N  

Many biological populations are age structured in that the recruitment of 
new individuals into the population depends on the density of a cohort 
of older individuals, e.g., all mammalian populations and populations of 
replicating and maturing cells. Models of these age-structured populations 
are most naturally framed in terms of first-order partial differential 
equations ("transport-like" equations) that are often nonlinear because 
of dependences of birth and/or death rates on population number (see 
Metz and Diekmann (1) for an excellent survey). 

Over the past decade a variety of mathematical results illustrating the 
solution stability, and sometimes sensitive dependence of the solution 
behavior to the initial function, of these age-structured population models 
have appeared, (2-8) but they are not generally known in the broader 
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community. This paper illustrates these results using a nonlinear equation 
motivated by a simple model for cellular replication and maturation, and 
then examines the effect of parametric noise on the eventual solution 
behavior of the model. 

The plan of the paper is as follows. Section 2 summarizes some of 
the recent mathematical results of Lasota. (4~ Section3 illustrates the 
significance of these results using a simple, analytically tractable, nonlinear 
transport equation. We then examine the effect of parametric noise in 
Sections 4 and 5. 

2. M A T H E M A T I C A L  P R E L I M I N A R I E S  

There are several interesting results concerning the solution behavior 
of first-order partial differential equations with respect to stability and 
exactness.(2 8) Most of this work was initiated by the work of Lasota, (4) 
who considers the partial differential equation 

3u Ou 
-~+c(t,X)~x=f(t,x,u ) for (t,x)eD (1) 

with the initial condition 

u(0, x) = (p(x) for x ~ A (2) 

This section summarizes those results. 
In (1) and (2), A = [0, 1], D =  [0, oe)xA,  and c, f are continuously 

differentiable functions satisfying the following conditions: 

c(t, x) >10 for (t, x) e D (3a) 

f(t,x,u)>>.O for (t,x)eD (3b) 

f(t,x,u)<.kl(t)u+k2(t ) for (t,x)eD, u>~O (3c) 

with continuous coefficients kl,  k 2. We also let C+(A) be the set of all 
nonnegative continuously differentiable functions defined on the set A. 

The first result is related to the uniqueness of the solution of Eq. (1) 
with (2). 

T h e o r e m  1. If c and f satisfy inequalities (3) and 

c(t,O)=O for t>~0 (4) 

then for each q~C+(A) Eqs. (1) and (2) have a unique solution 
u ~ C+ (D). Conversely, if for one ~0 ~ C+ (A) Eqs. (1) and (2) have a unique 
solution u~ C+(D), then c satisfies (4). 
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Before stating a stability result, we require a further set of conditions, 
namely that 

c(t,x)>>.Co(X )>0 for ( t , x ) ~ D ,  x > 0  (5a) 

f( t ,  x, u) <<. fo(x, u) for (t, x) 6 D, u r u o (5b) 
U - -  U o 

where u/> Uo > 0 is a given number, Co is a continuous function, and fo is 
a continuous bounded function such that 

fo(x, 0) ~< 0, fo(0, u) < 0 for x ~ A, u > 0 (5c) 

Then we have the following result. 

Theorem 2. If c and f satisfy conditions (4) and (5), then for each 
~o E C+(A) such that (p(0)> 0 the solution of Eqs. (1) and (2) satisfies 

lira u(t, x) = Uo uniformly for x e A (6) 
t ~ o o  

The next results are concerned only with the autonomous case of 
Eqs. (1) and (2), so we consider 

~u Ou 
~ t + c ( X ) ~ x = f ( x , u )  for ( t , x )~D (7) 

with the initial condition 

u(O,x)=qo(x) for xEA (8) 

Both c and f are assumed to be continuously differentiable as before, and 
we also assume that 

c(O) = O, c(x) > 0 for 0 < x ~< 1 (9a) 

fu(0, Uo)<0, f(O,u)(U-Uo)<O for u > 0 ,  UCUo>0 (9b) 

and 

0 <. f (x ,  0), f (x ,  u) <~ k a u + k2 

with constant kl,  k2 > 0. 

for x~A,  u>~O (9c) 

Theorem 3. If c and f satisfy conditions (9), then for all initial 
functions ~0 such that ~o(0)>0 with q~eC+(A) the solution u of Eqs. (7) 
and (8) satisfies 

lira u(t, x)=Wo(X) uniformly for x ~ A  (10) 
t ~ o z ~  
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where Wo(X), which is continuous for x e A and differentiable for 0 < x ~< 1, 
is the unique solution of the initial value problem 

dw 
c(x)--z-=f(x,w), 0 < x ~ < l ,  w(0) = Uo (11) 

To appreciate what happens when the solution u of (1)-(2) is not 
stable, we introduce a bit of terminology. Consider the solutions of Eqs. (7) 
and (8) as the trajectories of the semidynamical system {St}t~>o defined by 

(Stq~)(x) = u(t, x)  

where u(t, x) is the solution of Eqs. (7) and (8). Each St is a continuous 
mapping of C+(A) into itself and 

S0(p=~o, Stl(St2rp)=St~+t2~o for tl,h>~O, ~oeC+(A) 

We further define two sets of functions 

Zo=  {~o ~ c+(,~): q~(O) = o} 

and 

Zw = {~0 ~3o: ~o(x)<wo(x ) for xeA}  

Given an arbitrary metric space S and an arbitrary semidynamical system 
{S,}t~>0 operating on Z, a point (p e 2 is called stable if for any sequence 
~o n e Z the condition limn~ ~ (Pn =q) implies that St~on-~ St~o uniformly for 
all t~>0. The system {St} is called chaotic if: (a)every point (p~Z is 
unstable; and (b) there  exists ~o e Z such that the trajectory {St(0: t~>0} is 
dense in Z. 

Now we have the following most interesting result. 

T h e o r e m  4. If the functions c and f satisfy conditions (9) and 

f(O, O) -- 0 (12) 

then the semidynamical system {St}t~>o generated by the initial value 
problem of Eqs. (7) and (8) is chaotic in the set S w. 

3. A S IMPLE EXAMPLE 

To illustrate these results, we turn to a mathematical formulation of a 
model for a renewing and maturing cellular population. ~ 11) Let u(t, x) be 
the number of cells of age x at time t, where the finite age x is normalized 
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so x e [0, 1]. Then the function u can be shown to obey the first-order 
partial differential equation 

•u ~u 
-~7+ r x  ~xx = ~u(1 - u) (13) 

with the associated initial condition 

u(0, x) = (0(x) (14) 

In (13), r x  (with r > 0 )  is the velocity of aging and ~ e R  is a constant 
related to the relative proliferation rate and the cell death rate. 

Using the method of characteristics, the general solution to Eq. (13) 
with (14) is given by 

~o(xe "') e ~' 
u ( t , x ) =  (15) 

1 --  ~ p ( x e - " ' )  [ 1 - e ~]  

Having this analytic solution allows us to clearly demonstrate all of the 
interesting aspects of the results quoted in Section 2. 

First note that since all of the conditions of Theorem 1 are satisfied, 
the solution given by Eq. (15) is unique. Second, in considering the stability 
of (15), note that conditions (9) are easily shown to be satisfied for e both 
positive and negative (but not for :~ = 0). 3 As a consequence, as long as 
~o(0) > 0, the solution (15) is globally stable by Theorem 3, and in fact 

lim u(t,x)={01 ', ~ < 0  (16) 
t~oo 0 < ~  

However ,  if ~o(0)=0, the solutions (15) are chaotic in the sense of 
Theorem 4, since (13) satisfies (12). This can be demonstrated by picking 
an initial function of the form 

~ o ( y ) = f i y "  for y e A =  [-O, l ] ,  fiE(O, 1) (17) 

Then (15) takes the explicit form 
fixne(~ nr)t 

u(t, X)= 
1 - f i x ' e  .rt + f i x . e  ( . . . .  )t 

from which 

I O ,  f i x"  ~ < nr  

Jim u(t, x) = | l  + fix 

[,1, nr  < e  

(18) 

(19) 

3 When c~ = 0, the solution of (13) is u(t, x) = q~(xe -r') and limt~ ~ u(t, x)  = (o(0). 
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This analytic solution (19) explicitly demonstrates the multistability 
that may be exhibited by the "chaotic" solutions (15) of (13) when 
cp(0) = 0. Namely, depending on which initial function ~0 is drawn from the 
class Z~ of initial functions (see Theorem 4), the solution (15) will, in the 
long-time (t--* oo) limit, be uniformly 0 or 1 or show spatial dependence. 
Thus, in a fashion entirely analogous to discrete- and continuous-time 
chaotic systems, the solution u displays a sensitive dependence on the 
initial condition (i.e., on the initial function ~o). 

4. ENSEMBLE STATISTICS 

In this section we examine how the dynamics of Eq. (13) discussed in 
the previous section would be manifested in the statistics of an ensemble. 
We assume that each unit in the ensemble has dynamics described by (13), 
but each has a different value of the parameter ,. Specifically, ~ is assumed 
to be distributed with density g(~) for ~ - Ac~ ~ ~ ~< ~ + Aa. 

For illustrative purposes, and to allow the required moments of u to 
be calculated analytically, assume that the density g of the distribution of 

values is the rectangular (uniform) density 

~l/(2A,), ~ - - d a ~ < ~ < 8 + A a  (20) 
g(a) = ~0, otherwise 

The mean value o f ,  is 

~ + ~  :r d~ = ~ (21) 

while the variance is 

2 f~+dc~ (A~x) 2 
[~ _ ~ ] 2  g ( ~ )  d~ = - -  ( 2 2 )  

3 

The mean value 

~.(t,x)=(u(t,x))= u(t,x) g(~)d~ 

of u across the entire ensemble is given by averaging (15), weighted by the 
uniform density (20): 

s  n ~r "t) e(a+~)'+ 1-q0(xe-rt)~ 
~qo(xe -rt) e(~- 3 ~ ) ~ ~ 7  T 1 q)(xe-rt)j (23) 
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Further, the mean square of u is 

</g2(t, X ) )  = ~ A~ 

where 
= (u(t, x)> +R(t,  x) (24) 

1 
R( t ,  x )  - 1 -- 2teP(xe-')Ac~ q)(xe "') e (a + 3~)t + 1 - (p(xe -rt)  

_ 1 "( 
(25) 

(p(xe -r ,)  e(~-3~), + 1 - (p(xe -~') 

so the variance of u, az(t ,  x )  = (u2( t ,  x ) )  - (u ( t ,  x ) )  2, is g ivenby 

~2(t, x )  = (u ( t ,  x ) ) [ 1  - (u ( t ,  x ) ) ]  + R(t ,  x )  (26) 

To understand the effects of this distribution of ~ across the 
2 noting that ensemble, we examine the long-time limits of ~u and a , ,  

lim, ~ o~ R(t ,  x )  = O. 

The  C a s e  o f  q~(0) > O. When (p(0)>0, the mean value ~u has the 
following limiting values: 

t O, o~< - A ~  
a+~ 

~ u - l i m  ~ u , ~  } 2 - - ~  ~ -Ao:<~<<.3o~ (27) 

(1,  A~<o~ 

and the limiting variance is 

0 i ~ ~< - A ~  
- 2  _ _  lim 2 ( ~ -  Acr + Ace) -Ace ~< ~ ~< 3c~ (28) 
~r = ,~oo eru = 2Acr ' 

From (21) and (22) it is straightforward to rewrite (27) in terms of the 
mean and standard deviation of cr across the ensemble: 

"0, ~ ~<-1 

(~=  1+ , - 1 4 ~ - ~ a  ~<1 (29) 

1, 1 ~< V/~cr= 
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Similarly, the long-time limiting variance can be rewritten as 

-2 O 'u~  

0, x f~a~< -1  

1 - \w/ -5~  J 3, - 1  ~ < ~ - ~  1 

O, 1 ~ x f S ~  ~ 

(30) 

Several aspects of these simple forms for ( ,  and 62, as functions of 
~ /xf3  a~ are striking. First, the different limiting values exhibited in (16) 
have been replaced by a continuum of ( ,  values in the ensemble ranging 
from (u = 0 for ~ /x f3  a~ ~< -1,  through a continuous increase in ~u from 
0 to 1 for - l~<~/x / -3cr~<l ,  to finally culminate in ( u = l  for 
1 ~< ~ /x /3  a~. These behaviors are an obvious extension of the limits in 
(16) when it is realized that ~ / x / - 3 ~ < - 1  corresponds to ~ + A s = 0 ,  
while 1 <~ ~ /x /3  a~ is equivalent to ~ - As = 0. Second, it is only for - 1 < 
~ / x / 3 a ~ <  1 that the limiting variance ~ is nonzero, and it has a 
maximum of (xf3 ~r~)/2 when ~/x//3a~-=0. Finally, from an ensemble 
perspective changes in the standard deviation a~ have an anomalous effect 
depending on the sign of ~ .  Namely, for ~ > 0, decreasing a~ drives the 
ensemble average 4, toward its maximum value of 1, while for ~ < 0, 
decreasing % drives ~u toward its minimum of 0. 

The Case  of  qo(O)=O. 
initial function (17), the mean ~u has the following limits: 

I O, 
(~ + A s - n r  

' 

t.1, 

When ~o(0)=0, and specifically for the 

n r -  As  <... (~ <.. nr + As  

nr + As<<.~ 

(31) 

which are slightly different from the previous case. Further, the limiting 
variance is 

f O i ~ <~ n r -  A~ - 2  (~ -- Act -- nr)(~ + As  - nr) 
~r = 23s  , n r -  As  <<. ~ <~ nr + As  

nr+As<-..~ 

(32) 
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Again rewriting ~ and A~ in terms of r and a~, (31) and (32) become 

and 

O, ~<-1 

1 (1 + ~ - - n r ~ ,  

1, l <~ x/-~ a ~ 

(33) 

- 2  

0, 

O, 

.~-~ ~ ~< --1 

_ l  ~ - - n r  

~c~ - -  n r  

~< 1 (34) 

From (33) and (34), it is clear that the effect of having an initial function 
of the form (17) is to simply shift the graphs of ~u and ~r, versus ~ / x f 3  ~r~ 
to the right by a factor of nr/x/3 a~. 

5. TRAJECTORY STATISTICS 

In contrast to the previous section, we now examine the alterative 
situation in which the parameter ~ of Eq. (13) fluctuates along the trajec- 
tory as a function of time. Specifically, we assume that 

dw(t) 
dt 

wherein w is assumed to be a uniformly distributed Wiener process with 
density given by 

~l/(2Aw), -Aw<~w<~Aw (35) 
g(w) = (0, otherwise 

The Wiener process w has a mean value 

g ,  A w  

r = I wg(w) dw = 0 (36) 
,1 - - A v ~ ,  
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and variance 

f~  (3w) ~ 2 [w -- ~ ] 2  g(w) dw = (37) 
aw = -~w 3 

We may once again solve Eq. (13) with the initial condition (14) using 
the method of characteristics, but realizing that the characteristic equation 
for u is no longer an ordinary differential equation. Rather, it is a stochastic 
differential equation, given by 

du 
dt + dw(t) (38) 

u(1 -u) 

Interpreting (38) in the sense of the Ito calculus, (~2) we have the solution 

go(xe rt) eate~(,) 
u(t, x) = 1 -- go(xe- ')[1 - e %  ~(t)] (39) 

The mean value of u for a large number of realizations is 

~ u ( t , x ) = 2 A ~ l n ~  go(xe r') e~te~W + l -- go(xe-'t) ; 
[go(xe-rt) e~te-~W + 1 -- go(xe-rt)J 

(40) 

Further, the mean square of u once again satisfies (24) with 

g(t, x ) -  1 - q~(xe " )  ].f~P 1 
2dw (xe -'~) ea'e ~w + 1 - go(xe rt) 

_ } 
go(xe- ' )  e ~ e - ~  + 1 - go(xe-r') 

(41) 

[again limt_~ ~ R(t,  x ) = 0 ] ,  so the variance ~](t, x) is given by (26) as 
before. 

a. L imit ing ( t - *  oo) S o l u t i o n  S t a t i s t i c s .  The long-time limits 
2 show behavior quite different from the ensemble behavior. of 3, and a u 

For go(0)> 0, the mean value ~u has the limiting values 

IO,1 i < 0 
go(O) e aw + 1 -- go(O) "~, ~ = 0 (42) 

~. -= l i m  ~. = } 2-A-~w In [go(O) e ,~w + 1 - go(O)J 

U, 0<4  
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while the limiting variance is 

c~ u -  lim ~2= , (c~=0)[ l_~u(c~=0)] ,  0=c~ (43) 

' ~  [0, 0 < ~  

These limits may be understood from the dynamics of the original equa- 
tion. Since the noise on the parameter ~ was assumed to be additive, the 
noise amplitude will approach zero as u--* 0 or u--* 1. Consequently, the 
limiting mean values given by (42) coincide with either 0 or 1, which are 
the limiting values of u. Further, since the amplitude of the noise goes to 
zero in these two limiting cases, it is not unexpected that the limiting 
variance is zero. When q) is given by (17), so ~o(0)= 0, the same conclu- 
sions hold if c~ is replaced by ~ - nr. 

b. Temporal Behavior of Solution Statistics. To more ful ly 
examine the effect of fluctuations in c~ on the statistics of the solution of 
(15), we turn to an examination of the temporal evolution of ~.,(t, x) and 
~rz(t, x) to their limiting values given in (42) and (43), respectively. 

This is perhaps easiest if we assume the noise amplitude Aw is small 
and expand the expressions (40) and (41) in powers of Aw. Denote the 
solution (39) in the absence of noise (Aw = 0) by Uo, which is given by 

~O(Xe -r t )  e ~t 
Uo(t, x ) -  (44) 

1-#)(xe r')[1-e ~'3 

Then a rather tedious calculation gives 

x) Uo(t, x) {1 ( Jw) 2 
+' - - ~  [1 - Uo(t, x)] [1 - 2Uo(t, x)] + (ff((z~W)4)] 

--uo(t,x) l + 2 [ 1 - U o ( t , x ) ] [ 1 - 2 U o ( t , x ) ] + ( 9 ( a 4 ,  ) (45) 

Carrying out the same procedure for the factor R defined in (41), and then 
using the result plus (45) in the expression (26) for the variance, gives 

crZ(t, x) ~ (Aw)2 uZ(t, x)[-1 - Uo(t, x)] 2 + (Q((Aw) 4) 
- 7 -  

2 2 = awUo(t, x)[1 - Uo(t, x)] z + (9(a4) (46) 

Equations (45) and (46) show the origin of the limiting behavior of 4, 
and o 2 displayed in (42) and (43). From (45) it follows that the sign of the 

822/70/1-2-19 
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term in o2(t, x) will be positive for 0 < Uo(t, x) < 1/2 and negative for 1/2 < 
Uo(t, x) < 1. Consequently, ~u(t, x) will be, respectively, greater or less than 
Uo(t, x) in these circumstances. The maximum deviation of ~u(t, x) away 
from Uo(t, x) occurs when 

u~ x)= ~ +-x/-~6 

To understand the effect of noise on the evolution of the variance (46), 
consider the following. The maximum variance occurs when Uo(t, x) - 1/2 
and has the value 

2 

0"2 . . . .  (t, X) ~w 
16 

We now pose the following question. What are the conditions such that 

( l - - e )  2~ . . . .  (t,x)<<cr2(t,x)< a O" . . . . .  (t, x) 

where e ~ [0, 1 ]? Condition (47)  is equivalent to 

1 - ,,.re 1 + x/-~ 
-2- <<. U o ( t, x )  < < . - -  2 

(47) 

A general discussion of when (47) is satisfied for all initial functions q~ is 
quite complicated. We restrict ourselves to a few simple cases. 

In the simplest case where ~0- cg is a constant, then simple graphical 
2 considerations (Fig. la) indicate that the time interval T~(x*) over which a u 

satisfies (47) will be maximized by picking 

l-,f  
cg~< for c7>0 

2 
(48) 

1 + ,fi 
c ~ > _ _  for 4 < 0  

2 

and that T~ is a decreasing function of increasing [el when conditions (48) 
are satisfied. If c~ - 0, then it is trivial that (47) can be satisfied for all time 
if 

2 2 
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Things become  more  interesting in the case that (p (0 )=  0, as can be 
illustrated (see Fig. lb )  with the initial funct ion (17), so u0 has the explicit 
so lut ion  

f lxne( :~  -- nr)t 

U o ( t  , X )  - -  1 - -  f l x n e  nrt + f l x , , e ( a - - n r ) t  ( 4 9 )  

C 

~+~/~ 
2 

2 

2 

2 

l-~/e 

i 

2 -'" - 
& < n r  

I+X/~ 
2 

2 

l-v~ 
2 

,(0) = 0,a = n~ (c) 

Fig. 1. Graphical illustration of the discussion of Eq. (47). (a) For a spatially constant initial 
function ~o; (b, e) for ~o(y)=fly n, so (p(0) =0 .  (b) Y,#nr; (c) ~==-nr. In the text discussion the 
duration T~ is the length of time the noiseless solution Uo(t, x) spends in the interval 
[(1 - ,J~)/2,  (1 + x/7)/2] ,  denoted by the horizontal dashed lines. 
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Remember that Uo(t = O, x)  = ~x n and 

IO, flx~ ~2<nr 

lima, co Uo(t, x)  = I" 1 + fix n' nr = ~ (50) 

1,1, nr < ~  

When ~ r  then for a given x = x* we can maximize the time T,(x*)  
over which (47) is satisfied by picking fi such that 

1 - , / 7  1 
f l ~ < - -  for (~>nr 

2 X ~n 

fi>~ l + x / 7  1 ~  for ~ < n r  
2 x*" 

(51) 

From graphical considerations we expect that the maximal value of T~(x*) 
should be a decreasing function of Ic~ - nrh, and for small e a simple calcula- 
tion shows that 

maximum T ~ ( x * ) ~ - ( 9 ( L ~ _ n r ] )  

When c~ ~ nr the situation is somewhat different, as can be seen by 
examining the solution (49) in this situation: 

fix" (52) 
Uo( t, x)  = 1 - flxne nrt -t- fix a 

Noting that Uo(t, x)  is, in this case, a monotone decreasing function of time 
with 

fix n 
Uo(t = O, x)  ~ ~x n >~ =_ lira uo(t, x)  

l + f l x  n ,~o~ 

then it is obvious (see Fig. lc) that we can make T~(x*) quite long by 
choosing 

1 - x ~  - fix *n 
- -  =- lira Uo(t, x*) ( 5 3 )  

2 - I + B x  *n , ~  

If we could further arrange that 

Uo(t = 0, x*) - fix *~ ~< + x / e l  (54) 
2 

then we would have solutons whose variance would always satisfy condi- 
tion (47). Comparison of conditions (53) and (54) indicates that it is 
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necessary for e to satisfy ( x f 5 -  2) 2 < ~; ~< 1 for this to be at all possible, or 
that 0.0057 < e ~< 1. Further, it will be more likely that this can be realized 
when x* = 1. 

The observation that when the mean value ~ of the noise is in the 
neighborhood of nr there is a prolongation of the time T~ over which (47) 
is satisfied [it may even be the case that (47) is satisfied for the entire tra- 
jectory when ~ = nr] highlights an interesting point. Namely, the presence 
of parametric noise can serve to probe for the existence of chaotic behavior 
in the solutions of equations like (1) when the conditions of Theorem 4 are 
satisfied. This conclusion is easy to understand once it is realized that the 
parametric noise on c~, in the example we have presented using the initial 
function (17), is equivalent to probing the space 2w of initial functions. 
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